Deep dive into the treatment algorithm of multiple myeloma

Michel Delforge Jolien Raddoux

Dept of Hematology Leuven

Multiple myeloma

Multiple myeloma

- Second most common hematological cancer
- Therapeutic innovation has transformed multiple myeloma from an acute life threatening cancer to a more chronic disease in the majority of patients
- However, many treatment options generate complexity in the treatment-decision algorithm

Multiple myeloma: signs and symptoms

Calcium

High levels of calcium in the blood

Thirsty, loss of appetite, nausea or constipation, confusion

Anemia

Too few red blood cells

Fatigue and weakness, shortness of breath

Renal failure

Kidney damage caused by abnormal proteins

Frequent urination or no urination at all over a longer period of time

Bone lesions

Osteolytic bone disease

Bone pain

Multiple myeloma: unprecedented therapeutic progress

Timeline of drug discovery and year of multiple myeloma diagnosis (by decade)

Shah U A, Mailankody S. Emerging immunotherapies in multiple myeloma BMJ 2020; 370 :m3176 doi:10.1136/bmj.m3176

Treatment options at first relapse: EHA-ESMO guidelines Exalidentic moreasing number of treating reprises **2017**¹ **2021**² DaraRd [I, A DaraKd [I, A IsaKd [I, A] Kd Kd KRd EloRd II. A EloRd IxaRd IsaKd [I, A SVd PomVd II. VRd SVd [I, A] PomVd [I, / KRd VenVd^a SVd DaraKd [I, A DaraKd 🗓 lxaRd IsaKd []. DaraVd [I, A Kd SVd xaRd II. IsaKd [I, A] VenVd^a VenVdª SVd [I, A SVd [I, A] VenVdª [I, A

C, cyclophosphamide; d/D, dexamethasone; Dara, daratumumab; Elo, elotuzumab; IMiD, immunomodulatory drug; Isa, isatuximab; Ixa, izaxomib; K, carfilzomib; M, melphalan; P, prednislone; Pano, panobinostat; Pom, pomalidomide; R, lenalidomide; S, selinexor; T, thalidomide; V, bortezomib; Ven venetoclax. 1. Moreau P, et al. Ann Oncol 2017;28:iv52–iv61; 2. Dimopoulos MA, et al. Ann Oncol 2021;32:309–322.

How to guide the therapeutic choice at relapse?¹

How to tailor the treatment for multiple myeloma patients based on data ?

Development of patient specific treatment algorithm, depending on:

- genetic risk stratification
- fit or frail status
- comorbidities

Searching for predictive factors (disease and patient-related) for therapeutic response

Contributions of Athena

Development of multiple myeloma explorer tool which allows :

 easy visualisation of data: descriptive data at different timepoints, outcome analysis (OS, TTNT) and treatment analysis/ treatment transitions (= 'nodes' in the treatment pathway)

- Fast answers to research questions by creating different cohorts

Development of legal and ethical framework for building a federated network

Development of a network to connect with other hospitals

Data flow

CSV: Comma-seperated values ETL: Extract – Transform – Load CDM: Common Data Model

Athena as a tool to benchmark real world evidence with clinical trial data

Overall survival of MM patients receiving autologous stem cell transplantation

Overall survival from 1st line treatment for patients with autologous stem cell transplantation between 2010 and 2022

Time to next treatment of MM patients receiving autologous stem cell transplantation

TTNT from 1st line treatment for patients with autologous stem cell transplantation between 2010 and 2022

Transplantation plus lenalidomide: raising the bar

Transplantation plus lenalidomide: real-world evidence

Overall survival of MM patients *not* receiving autologous stem cell transplantation

Overall survival from 1st line treatmentfor patients *without* autologous stem cell time time frame: 2010 to 2022

Optimizing the use of daratumumab in relapsed MM

TTNT2 of DRd versus DVd in the DARA-2 cohort and of DRd versus the non-DARA-2 cohort:

TTNT3 of DRd versus DVd in the DARA-3 cohort and of DRd versus the non-DARA-3 cohort:

16

Time (months)

14

20

Time (months)

30

40

2

0

40

0.25

0.00

Number at risk

29

10

20

2

10

Optimizing the use of daratumumab in relapsed MM (2)

OS2 and OS3 of DRd versus DVd in the DARA-2 and DARA-3 cohort:

45

Athena as a tool for national networking in MM

KU LEUVEN

Athena as a tool for international networking in MM

Conclusions

Many new therapeutic options in MM have increased the need for patient-specific treatment pathways to improve outcome and optimize therapeutic choice

In diseases like multiple myeloma there is a high unmet need to use structured data from the medical files to better guide the therapeutic challenges

Athena has paved the path towards a more comprehensive and faster analysis of large sets of patient data answering specific research questions

The contribution of Athena is not limited to a single-center, but facilitates national and international collaborations

